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Abstract

Failure can be prevented in time by preventive maintenance (PM) so as to promote reliability only if failures can be early predicted. This
article presents a failure prediction method for PM by state estimation using the Kalman filter on a DC motor. An exponential attenuator is
placed at the output end of the motor model to simulate aging failures by monitoring one of the state variables, i.e. rotating speed of the
motor. Failure times are generated by Monte Carlo simulation and predicted by the Kalman filter. One-step-ahead and two-step-ahead
predictions are conducted. Resultant prediction errors are sufficiently small in both predictions.q 1999 Elsevier Science Ltd. All rights
reserved.
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Nomenclature

(X)k: The value of (X) at timekT
�·̂�a=b: The estimate of (·) at timeaT based on all

known information about the process up to time
bT

a: Parallel path number for armature winding
A: A matrix
Ac: Coefficient matrix of the state equation for a

continuous system
Ad: Coefficient matrix of the state equation for a

discrete system
AT: Transpose matrix ofA
A21: Inverse matrix ofA
B: Damping coefficient
Bc: Coefficient matrix of the state equation for a

continuous system
Bd: Coefficient matrix of the state equation for a

discrete system
Bk: Coefficient matrix for the input term of a

discrete state equation
C: A matrix
Cc: Coefficient matrix of the state equation for a

continuous system
Cd: Coefficient matrix of the state equation for a

discrete system

Dc: Coefficient matrix of the state equation for a
continuous system

Dd: Coefficient matrix of the state equation for a
discrete system

E: Applied voltage
eb: Motor back emf
ef: Field voltage
ek/k 2 1: Prior estimation error
Er: Estimation error for mean value, or confidence

interval for estimated mean value
E[X] : Expected value ofX
f(t): Distribution function of life
Hk: Matrix giving the ideal (noiseless) connection

between the measurement and the state vector
h(t): Failure rate
ia: Armature winding current
i f: Field current
J: Moment of inertia of rotor and load
k1: Motor constant
kb: Back emf constant
kf: Field flux constant
Kk: Kalman gain
km: Motor gain constant
kT: Motor torque constant
La: Armature winding inductance
Lf: Field inductance
L21: The inverse Laplace transform
N: Sample size
P: Magnetic pole number
Pk/k21: Estimation error covariance matrix
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Qk: Covariance matrices for disturbance
R: Armature winding resistance
Rk: Covariance matrices for noise
t: Time variable
T: Motor output torque
ui: Standard uniformly distributed random

numbers
Uk: Control input of a discrete state equation at state

k
Uk: Input vector at statek
Vk: Noise, measurement error vector. It is assumed

to be a white sequence with known covariance.
Wk: Disturbance, system stochastic input vector. It is

assumed to be a white sequence with known
covariance and having zero crosscorrelation
with Vk sequence

x, X: Variable of a distribution function
XD0: Initial states resulting from deterministic input
Xk: System state vector at statek
XS0: Initial states resulting from stochastic input
Yk: System output vector at statek
Z: Conductor number of armature winding
Zk: Output measurement vector
Za /2: Z-value of the standard normal distribution, that

resulting the cumulative probability between 0
andZ is a /2

a : Confidence level
u : Motor angle displacement
l : Constant failure rate
s : Standard deviation of a distribution function
t : Failure time constant of the motor
tm: Motor time constant
f : Air gap flux
Fk: Matrix relatingXk to Xk11 in the absence of a

forcing function. It is the state transition matrix
if Xk is sampled from a continuous process.

1. Introduction

Preventive maintenance (PM) is an effective approach to
promoting reliability [1]. Time-based and condition-based
maintenance are two major approaches for PM. Irrespective
of the approach adopted for PM, whether a failure can be
detected early or even predicted is the key point. Many

methods have been proposed for failure detection in
dynamic systems [2]. Fault detection based on modeling
and estimation is one of the methods [3]. However, the
Kalman filter is useful not only for state estimation but
also for state prediction. It has been widely used in different
fields during the past decades, such as on-line failure detec-
tion [4], real time prediction of vehicle motion [5], and
prediction for maneuvering target trajectories [6]. The
Kalman filter is a linear, discrete-time, and finite-dimen-
sional system [7]. Its appearance is a copy of the system
that is estimated. Inputs of the filter include the control
signal and the difference value between measured and esti-
mated state variables. By minimizing mean-square estima-
tion errors, the optimal estimate can be derived. As a result,
the output of the filter becomes optimal estimates of the next
step time-state variables. If a device is judged to know that it
is going to fail by the predicted future state variables, the
failure can be prevented in time by PM. However, future
state variables should be accurately predicted at a reason-
ably long time ahead of failure occurrence. This study
proposes the state estimation and prediction for PM using
the Kalman filter.

In Section 2, a discrete system model with deterministic
control input and white noise disturbance and noisy output
measurement will be constructed first. Equation formulation
for state estimation of the Kalman filter then follows. Deter-
ministic inputs are considered in the formulation. Moreover,
equations forN-step-ahead prediction are derived. Section 3
presents the transfer function, continuous state model, and
the discrete state model of a DC motor that is employed as
an example in this article. Section 4 presents the simulation
system with prescribed parameters, Monte Carlo simulation
and ARMA model used to generate necessary data for fail-
ure prediction simulation, and the exponential attenuator
used to simulate aging failure mode. Results and discussions
are in Section 5.

2. Kalman filtering

2.1. System model

The block diagram of a discrete system is shown in Fig. 1.
The state equations [7] are:

Xk11 � FkXk 1 BkUk 1 Wk; �1�
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Fig. 1. Block diagram of a discrete system.



Yk � HkXk; �2�

Zk � Yk 1 Vk: �3�
Substituting Eq. (2) into Eq. (3) yields

Zk � HkXk 1 Vk: �4�
Let E[X] be the expected value ofX, thus, covariance

matrices forWk andVk are given by:

E�WkW
T
i � �

Qk; i � k

0; i ± k
;

(
�5�

E�VkV
T
i � �

Rk; i � k

0; i ± k
;

(
�6�

E�WkV
T
i � � 0; for all k andi: �7�

It follows that bothQk and Rk are symmetric and positive
definite [8].

2.2. State estimation

State estimation aims to guess the value ofXk by using
measured data, i.e.Z0;Z1;…;Zk21: Let a $ b, and define the
notation�·̂�a=b as the estimate of (·) at timeaT based on all
known information about the process up to timebT. Accord-
ingly, X̂k=k21 is called the prior estimate ofX, and X̂k=k is
called the posterior estimate ofX [8]. The prior estimation
error is defined as

ek=k21 � Xk 2 X̂k=k21: �8�
As Wk andVk are assumed to be white sequences, the prior
estimation error has zero mean. Consequently, the asso-
ciated error covariance matrix is written as

Pk=k21 � E��ek=k21��ek=k21�T�

� E��Xk 2 X̂k=k21��Xk 2 X̂k=k21�T �: �9�
The estimation problem begins with no prior measurements.
Thus, the stochastic portion of the initial estimate is zero if
the stochastic process mean is zero; i.e.X̂0=21 is driven by

deterministic inputXD0 only. It follows from Eq. (8) that

e0=21 � X0 2 X̂0=21 � X0 2 XD0 � XS0: �10�
Employing Eqs. (9) and (10) yields

P0=21 � E�XS0X
T
S0�; �11�

whereXD0 andXS0 are initial states resulting from determi-
nistic input and stochastic input, respectively.

The Kalman filter is a copy of the original system and is
driven by the estimation error and the deterministic input.
The block diagram of the filter structure is shown in Fig. 2.
The filter is used to improve the prior estimate to be the
posterior estimate by the measurementZk. A linear blending
of the noisy measurement and the prior estimate is written as
given in Ref. [8]

X̂k=k � X̂k=k21 1 Kk�Zk 2 HkX̂k=k21�; �12�
whereKk is a blending factor for this structure. Once the
posterior estimate is determined, the posterior estimation
error and the associated error covariance matrix can be
derived as

ek=k � Xk 2 X̂k=k; �13�

Pk=k � E��ek=k��ek=k�T�

� E��Xk 2 X̂k=k��Xk 2 X̂k=k�T �: �14�
The optimal blending factor is written as given in Ref. [8]

Kk � Pk=k21HT
k �HkPk=k21HT

k 1 Rk�21
: �15�

This specificKk, namely, the one that minimizes the mean-
square estimation error, is called Kalman gain.

Substituting Eq. (15) into Eq. (12), the posterior error
covariance matrix can be derived as follows:

Pk=k � Pk=k21 2 Pk=k21HT
k �HkPk=k21HT

k 1 Rk�21HkPk=k21

� Pk=k21 2 Kk�HkPk=k21HT
k 1 Rk�KT

k

� �I 2 KkHk�Pk=k21: �16�
As depicted in Fig. 2, the one-step-ahead estimate is
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Fig. 2. Block diagram of Kalman filter.



formulated as

X̂k11=k � FkX̂k=k21 1 FkKk�Zk 2 HkX̂k=k21�1 BkUk

� Fk�X̂k=k21 1 Kk�Zk 2 HkX̂k=k21�1 BkUk

� FkX̂k=k 1 BkUk �17�
Consequently, the one-step-ahead estimation error is

derived as

ek11=k � �FkXk 1 BkUk 1 Wk�2 �FkX̂k=k 1 BkUk�

� Fk�Xk 2 X̂k=k�1 Wk

� Fkek=k 1 Wk: �18�
In a manner similar to Eq. (14), the one-step-ahead error
covariance matrix is derived as

Pk11=k � E��Fkek=k 1 Wk��Fkek=k 1 Wk�T�

� FkPk=kF
T
k 1 Qk: �19�

According to the aforementioned statements, several
remarks for the Kalman estimation are concluded as
follows:

1. AsKk is optimal, the posterior estimatêXk=k is an optimal
estimate.

2. Based on Eqs.(12), (15), (16), (17) and (19), recursive
steps for constructing an one-step estimator are summar-
ized in Fig. 3.

3. The recursive loop has two different kinds of updating.
Eqs. (12) and (16) yieldinĝXk=k andPk=k from X̂k=k21 and
Pk=k21 are measurement-update; Eqs. (17) and (19)

projecting X̂k=k and Pk=k to X̂k11=k and Pk11=k are time-
update.

4. Initial conditions, i.e.X̂0=21;P0=21;F0;H0;Q0; and R0

have to be known to start recursive steps.

2.3. Prediction

The estimate resulting from recursive steps in Fig. 3 is a
one-step-ahead prediction. Based on the posterior estimate,
i.e. (12), the state that isN steps ahead of the measurement
Zk can be predicted by using the ARMA model [8]. From
Eqs. (17) and (19), equations forN-step-ahead prediction
are derived as

X̂k1N=k �
Yk

i�k 1 N 2 1

Fi

 !
X̂k=k

1
Xk 1 N 2 2

m�k

Ym1 1

i�k 1 N 2 1

Fi

 !
BmUm

" #

1 Bk1N21Uk1N21; �20�

Pk1N=k �
Yk

i�k 1 N 2 1

Fi

 !
Pk=k

Yk 1 N 2 1

j�k

FT
j

0@ 1A

1
Xk 1 N 2 2

m�k

Ym1 1

i�k 1 N 2 1

Fi

 !
Qm

Yk 1 N 2 1

j�m1 1

FT
j

0@ 1A24 35
1 Qk1N21:

�21�
The N-step predictor is an appendage of the one-step esti-
mation loop [8]. It is also shown in Fig. 3. As the current
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Fig. 3. One-step estimator andN-step predictor.



predicted value is assumed to be the initial value for the next
prediction, the more steps the predictor predicts, the larger
error it results in.

3. Armature-controlled DC motor

An armature-controlled DC motor is employed in this
study as the physical model to perform error prediction.
The motor circuit representation is shown in Fig. 4.

3.1. Transfer function

According to properties of a DC motor, the following
equations can be formulated [9]:

f � kf if ; �22�

T � ZP
2pa

fia

� k1�kf i f �ia
� kTia; �23�

eb � kb
du
dt

; �24�

La
d
dt

ia 1 Ria 1 eb � E; �25�

J �u 1 B _u � T; �26�
wherek1 � �ZP=2pa� is called the motor constant, andkT �
k1�kf if � is the motor torque constant.

Taking the Laplace transform for Eqs. (24)–(26) results
in

Eb�s� � kbsu�s�; �27�

�Las1 R�Ia�s� � E�s�2 Eb�s�; �28�

�Js2 1 Bs�u�s� � T�s� � kT Ia�s�: �29�
Combining Eqs. (27)–(29), the transfer function of a DC
motor is derived as

u�s�
E�s� �

kT

s��sLa 1 R��sJ1 B�1 kTkb� : �30�

Accordingly, the block diagram of a DC motor can be
shown in Fig. 5. IfLa < 0, (30) can be rewritten as

u�s�
E�s� �

km

s�stm 1 1� ; �31�

where km � �kT�=�RB1 kTkb� and tm � �RJ�=�RB1 kTkb�
are called the motor gain constant and motor time constant,
respectively.

3.2. Continuous state space model

Define u; _u ; and ia as state variables, so that the state
vector isX � �u _u ia �T: As

d
dt

u � _u ; �32�

substituting Eqs. (23) and (32) into Eq. (26) yields

d
dt

_u � 1
J
�kTia 2 B _u � � kT

J
ia 2

B
J
_u : �33�

Moreover, substituting Eq. (24) into Eq. (25) yields

d
dt

ia � 1
La
�E 2 Ria 2 eb� � E

La
2

kb

La

_u 2
R

La
ia: �34�

In measurement, the rotating speed_u is the motor output.
Accordingly, continuous state equations of the DC motor
are

d
dt

u

_u

ia

2664
3775 �

0 1 0

0 2�B=J� �kT=J�
0 2�kb=La� 2�R=La�

2664
3775

u

_u

ia

2664
3775

1

0

0

�1=La�

2664
3775E; �35�

Y � �0 1 0�
u

_u

ia

2664
3775: �36�
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Fig. 4. Circuit representation of DC motor.

Fig. 5. Block diagram of DC motor.



3.3. Discrete state space model

The general form of state equations for a continuous
system reads [10]:

_V�t� � Ac V�t�1 Bc U�t�;

Y�t� � Cc V�t�1 Dc U�t�: �37�
Let Fc�t� � L21��sI 2 Ac�21� be the state transition

matrix for Eq. (37), whereL21 denotes the inverse Laplace
transform. The discrete state equations sampled from Eq.
(37) by a sample-and-hold with time intervalT seconds are
as follows [11]:

Xk11 � AXk 1 BUk;

Yk � CXk 1 DUk;

where

A� Fc�T�; �38�

B�
ZT

0
Fc �t� dt

� �
Bc; �39�

C � Cc; �40�

D � Dc: �41�

4. Simulation system

4.1. Parameters

Parameters for the DC motor in this study are prescribed
as follows [12]:

E � 10 V; B� 0:001 N m s; J � 0:01 kg m2
;

KT � 1 N m A; Kb � 0:02 V s; R� 10V; La � 0:01 H:

Substituting them into Eqs. (35) and (36), the continuous
state equations of the motor become

d
dt

u

_u

ia

2664
3775 �

0 1 0

0 20:1 100

0 22 21000

2664
3775

u

_u

ia

2664
3775 1

0

0

100

2664
377510;

�42�

Y � �0 1 0�
u

_u

ia

2664
3775: �43�

Besides, the following parameters are used to conduct fail-
ure prediction:

1. The failure threshold of the motor is defined as 5% less
than the normal value, which is set to be the initial esti-
mate in the Kalman prediction procedure. That is, the
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Fig. 6. Block diagram of simulation system.



motor is judged to fail if the rotating speed drops to 95%
of the normal value.

2. Mean time between failure (MTBF) for the motor is
100 000 h [13].

3. Sampling intervalT is 1 h that is the increment time for
every step in Kalman prediction.

4. DisturbanceWk has mean 0 and variance 0.01 V [14].
5. Measurement errorVk for _u has zero mean and standard

deviation of 3.333 rad s21, which is 1% full scale accu-
racy [15] of the measurement.

6. PM lead-time is set atn × 60 min, wheren is the
ahead-step number for prediction. Accordingly, the
alarm signal goes on for reminding PM to be
executed whenever the Kalman filter predicts that the
motor speed will be lower than the prescribed threshold
n × 60 min later.

S.K. Yang, T.S. Liu / Reliability Engineering and System Safety 66 (1999) 29–39 35

Fig. 7. Failure time generated by Monte Carlo simulation and predicted by Kalman filter when lead-time� 60 min.



4.2. Monte Carlo simulation and ARMA model

Assuming failures of the motor occur randomly. Monte
Carlo simulation (MCS) is adopted to generate failure times
of the motor. The relation between failure rateh(t) and
distribution function of lifef(t) is [1]

f �t� � h�t�exp�2
Zt

0
h�t� dt�: �44�

Failures occur randomly during the useful life period of a
bathtub curve [1]. The failure rate is constant during this
period. Let the failure rate in (44) be a constantl , and (44)
becomes

f �t� � l exp�2
Zt

0
l dt� � l e2lt

; �45�

which is an exponential distribution function. Letui, i �
1,2,3,…,m, represent a set of standard uniformly distributed
random numbers, the corresponding numbersti of the
random variablet in Eq. (45), i.e. simulated failure times,
are written as [1]

ti � 2
1
l

ln ui ; �46�

with exponential distribution.
The measured data necessary for the recursive estimation

loop of the Kalman filter, as depicted in Fig. 3, are generated
by ARMA model, i.e. Eqs. (1)–(3). Simulations in this study
are performed by using MATLAB [16]. All needed random
numbers and white sequences with prescribed variances are
obtained using the random number generator in MATLAB.

4.3. Exponential attenuator

To account for the aging failure modes and the exponen-
tially distributed failure timesti, an exponential attenuator,

represented as e2t/t , is placed at output end of both motor
system and the Kalman filter. The block diagram of
simulation system is shown in Fig. 6. The symbolt of the
attenuator in Fig. 6 denotes the failure time constant of the
motor, which varies with failure times that are generated by
MCS.

5. Results and discussions

5.1. Results

Two categories of simulation are conducted in this study,
namely one-step-ahead prediction and two-step-ahead
prediction. According to the central limit theorem, estima-
tors follow the normal distribution if the sample size is
sufficiently large. The sample size of 30 is a reasonable
number to use [17]. The larger the sample size is, the smaller
estimated error becomes, which tends to zero when the
sample size approaches infinity. Hence, each simulation is
executed 100 times. Simulation results for 60 min lead-time,
i.e. one-step-ahead prediction, is shown in Fig. 7. Fig. 7(a)
shows the results of 100 simulations of failure times gener-
ated by MCS, failure times predicted by Kalman filter, and
the associated alarm times. Fig. 7(b) shows the results of one
of the 100 simulations with properly scaled coordinates. The
failure time differences between MCS and Kalman predic-
tion are shown in Fig. 8. The mean value and the standard
deviation of the differences for the 100 simulations are
234.71 and 65.90 min, respectively. The negative sign of
the mean value indicates that the failure time predicted by
Kalman filter is prior to the time generated by MCS.
According to theZ formula [17], the error for estimating
the mean value of the sample population can be calculated
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Fig. 8. Failure time difference between Monte Carlo simulation result and Kalman filter prediction when lead-time� 60 min.



by

E2
r � Z2

a=2s
2

n
:

The Z value for a 99% confidence level is 2.575 [17].
Solving forEr gives

Er � �2:575��65:8954������
100
p � 16:97�min�:

According to the aforementioned data, there is 99% confi-
dence to say that the interval for the mean value of the time
difference between MCS and Kalman prediction is
234.71 ^ 16.97 min, i.e. from217.74 to 251.68 min.
Taking the time difference into account, the alarm signal
will appear at least 77.74 min prior to failure occurrence.

Results for the second category simulation, i.e. two-step-
ahead prediction and lead-time for PM is 120 min, are
shown in Figs. 9 and 10. The mean value of the failure
time differences between MCS and Kalman prediction is
256.34 min, and the 99% confidence interval for this
mean is 20.06 min. The maximum prediction error for this
case is 76.40 min, which is 1.48 times greater than the error
of the one-step-ahead prediction.

5.2. Discussions

1. In order to avoid false alarm, the failure threshold cannot
be set too close to the normal value. Otherwise, a
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Fig. 9. Failure time generated by Monte Carlo simulation and predicted by Kalman filter when lead-time� 120 min.



decision-making algorithm is needed to identify that a
failure indeed occurs.

2. The disturbance amplitude should be composed of all
possible uncertainties of the motor and the environment.

3. The proposed method can not deal with abrupt changes
during a sampling interval. Thus, the sampling interval
should not be too long.

4. As the prediction is for PM purpose, the prediction time
should be reasonably long enough for the PM action.

5. In contrast to the deterministic portion, the variance that
is driven by the disturbance of the system is small. The
difference of state variables between prediction steps
fades very fast. Thus, using theN-step predictor, i.e.
(20), only prediction result of the first several steps is
of significance.

6. The proposed method in this study is exemplified by a
motor system, which is treated as a component. The
procedure can be executed on a multi-component system
if state equations for the components as a whole can be
constructed. Performing the procedure on either the
multi-component system or each of the components are
both feasible. For a complicated or large system, the
proposed method can be performed on those elements
in minimum cut sets that are constructed by fault tree
analysis or Petri net model for failure [18].

7. Regarding multiple failure modes, they can be modeled
to become modules, such as an attenuator for simulating
aging failure mode for an electrical motor exemplified in
this article, and placed at the system model output end to
extend the proposed method. As depicted previously, the
system model may be single-component or multi-
component. Whether the failure modules are placed in
serial parallel or other forms can be determined by
system failure analysis [18]. As for a multi-component
system with multiple failure modes the system can be
taken apart to several components and placed the related
failure module at the output end of each component to

perform state estimation by Kalman filter for each
component.

6. Conclusions

Failure prediction simulation for PM by state estimation
through Kalman filtering has been performed in this paper.
Resultant prediction errors are acceptable not only for one-
step-ahead prediction but also for two-step-ahead predic-
tion. Considerations for determining the required PM
lead-time and the sampling time contradict to each other.
How to compromise them and end up with an optimal value
is important. To simulate the aging failure mode, a state
variable, i.e. rotating speed, is monitored in this study.
The more variables are measured, the more complicated
failure modes can be simulated. Incorporating with fault
tree analysis or Petri net model for failure, the proposed
method can be performed on those elements in minimum
cut sets of a complicated or large system instead of on all
elements of the whole system. Failure can be prevented in
time so as to promote reliability only if failures can be early
predicted.
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