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Abstract

Failure can be prevented in time by preventive maintenance (PM) so as to promote reliability only if failures can be early predicted. This
article presents a failure prediction method for PM by state estimation using the Kalman filter on a DC motor. An exponential attenuator is
placed at the output end of the motor model to simulate aging failures by monitoring one of the state variables, i.e. rotating speed of the
motor. Failure times are generated by Monte Carlo simulation and predicted by the Kalman filter. One-step-ahead and two-step-ahead
predictions are conducted. Resultant prediction errors are sufficiently small in both predi€i®889 Elsevier Science Ltd. All rights

reserved.
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Nomenclature D.: Coefficient matrix of the state equation for a
continuous system
(@) The value of @) at timekT Dy Coefficient matrix of the state equation for a
Oab: The estimate of (-) at timaT based on all discrete system
known information about the process up to time E: Applied voltage
bT €. Motor back emf
a Parallel path number for armature winding e Field voltage
A: A matrix e/k — 1: Prior estimation error
A Coefficient matrix of the state equation for a E: Estimation error for mean value, or confidence
continuous system interval for estimated mean value
Ag: Coefficient matrix of the state equation for a E[X]: Expected value oK
discrete system f(t): Distribution function of life
AT Transpose matrix of\ Hy: Matrix giving the ideal (noiseless) connection
Ah Inverse matrix ofA between the measurement and the state vector
B: Damping coefficient h(t): Failure rate
B.: Coefficient matrix of the state equation for a o Armature winding current
continuous system it Field current
Bq: Coefficient matrix of the state equation for a J: Moment of inertia of rotor and load
discrete system K Motor constant
By: Coefficient matrix for the input term of a Ky Back emf constant
discrete state equation ki: Field flux constant
C A matrix Ky Kalman gain
Ce: Coefficient matrix of the state equation for a Knn: Motor gain constant
continuous system kr: Motor torque constant
Cq: Coefficient matrix of the state equation for a L. Armature winding inductance
discrete system Ls: Field inductance
Lt The inverse Laplace transform
N: Sample size
* Corresponding author; fax: 886-35720634. P: Magnetic pole number
E-mail addresstsliu@cc.nctu.edu.tw (T.S. Liu) Pu1: Estimation error covariance matrix
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Fig. 1. Block diagram of a discrete system.
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Qx: Covariance matrices for disturbance
R: Armature winding resistance
R Covariance matrices for noise
t: Time variable
T: Motor output torque
u: Standard uniformly distributed random
numbers
Uy Control input of a discrete state equation at state
k
Uy Input vector at stat&
Vi Noise, measurement error vector. It is assumed
to be a white sequence with known covariance.
W Disturbance, system stochastic input vector. Itis
assumed to be a white sequence with known
covariance and having zero crosscorrelation
with V, sequence
X, X: Variable of a distribution function
Xpo: Initial states resulting from deterministic input
X System state vector at stdte
Xso Initial states resulting from stochastic input
Y: System output vector at stalte
Z Conductor number of armature winding
Z: Output measurement vector
Zypo Z-value of the standard normal distribution, that
resulting the cumulative probability between 0
andZis a/2
a: Confidence level
0: Motor angle displacement
Al Constant failure rate
o Standard deviation of a distribution function
T Failure time constant of the motor
T Motor time constant
. Air gap flux
by Matrix relating X, to Xi.1 in the absence of a

forcing function. It is the state transition matrix
if Xy is sampled from a continuous process.

1. Introduction

Preventive maintenance (PM) is an effective approach to
promoting reliability [1]. Time-based and condition-based

maintenance are two major approaches for PM. Irrespective

of the approach adopted for PM, whether a failure can be
detected early or even predicted is the key point. Many

methods have been proposed for failure detection in
dynamic systems [2]. Fault detection based on modeling
and estimation is one of the methods [3]. However, the
Kalman filter is useful not only for state estimation but
also for state prediction. It has been widely used in different
fields during the past decades, such as on-line failure detec-
tion [4], real time prediction of vehicle motion [5], and
prediction for maneuvering target trajectories [6]. The
Kalman filter is a linear, discrete-time, and finite-dimen-
sional system [7]. Its appearance is a copy of the system
that is estimated. Inputs of the filter include the control
signal and the difference value between measured and esti-
mated state variables. By minimizing mean-square estima-
tion errors, the optimal estimate can be derived. As a result,
the output of the filter becomes optimal estimates of the next
step time-state variables. If a device is judged to know that it
is going to fail by the predicted future state variables, the
failure can be prevented in time by PM. However, future
state variables should be accurately predicted at a reason-
ably long time ahead of failure occurrence. This study
proposes the state estimation and prediction for PM using
the Kalman filter.

In Section 2, a discrete system model with deterministic
control input and white noise disturbance and noisy output
measurement will be constructed first. Equation formulation
for state estimation of the Kalman filter then follows. Deter-
ministic inputs are considered in the formulation. Moreover,
equations foN-step-ahead prediction are derived. Section 3
presents the transfer function, continuous state model, and
the discrete state model of a DC motor that is employed as
an example in this article. Section 4 presents the simulation
system with prescribed parameters, Monte Carlo simulation
and ARMA model used to generate necessary data for fail-
ure prediction simulation, and the exponential attenuator
used to simulate aging failure mode. Results and discussions
are in Section 5.

2. Kalman filtering

2.1. System model

The block diagram of a discrete system is shown in Fig. 1.
The state equations [7] are:

Xir1 = DX + BU + W, @
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Fig. 2. Block diagram of Kalman filter.

Yk = Hka, (2)
Zk = Yk + Vk- (3)
Substituting Eqg. (2) into Eq. (3) yields

Z = H X + Vg 4

Let E[X] be the expected value of, thus, covariance
matrices forW, andVy are given by:

T {ka i=k
E[WW ] = , , (5)
0, i #k
, i=k
SIAARES { " o (6)
0, i #k
EWV 1=0, forall kandi. @)

It follows that bothQ, and R, are symmetric and positive
definite [8].

2.2. State estimation

State estimation aims to guess the valueXpby using
measured data, i.&g, Zy, ..., Z,_1. Leta = b, and define the
notation(%),, as the estimate of (-) at timeel based on all
known information about the process up to tibile Accord-
ingly, X1 is called the prior estimate of, and Xy is
called the posterior estimate ¥f[8]. The prior estimation
error is defined as

Bk-1 = Xk — Rigk-1- )

deterministic inpufXp, only. It follows from Eq. (8) that

8y-1 = Xo — Xo—1 = Xo — Xpo = Xso- (10
Employing Egs. (9) and (10) yields
Po-1 = E[XsoX&al, 11

whereXpg and Xgg are initial states resulting from determi-
nistic input and stochastic input, respectively.

The Kalman filter is a copy of the original system and is
driven by the estimation error and the deterministic input.
The block diagram of the filter structure is shown in Fig. 2.
The filter is used to improve the prior estimate to be the
posterior estimate by the measuremantA linear blending
of the noisy measurement and the prior estimate is written as
given in Ref. [8]

Kok = Xigk—1 + Kie(Z = HXig—1). (12
whereKy is a blending factor for this structure. Once the
posterior estimate is determined, the posterior estimation

error and the associated error covariance matrix can be
derived as

8k = Xk — Xk (13
Pk = El(@gi)(@)' ]
= E[(X% — Rid X — X" 1. (14)

The optimal blending factor is written as given in Ref. [8]

K = Pik-1HE (HPig-1He + R0~ (15)

This specificKy, namely, the one that minimizes the mean-

As W, andV, are assumed to be white sequences, the prior square estimation error, is called Kalman gain.
estimation error has zero mean. Consequently, the asso- Substituting Eqg. (15) into Eqg. (12), the posterior error

ciated error covariance matrix is written as

Puk-1 = El(@gk—1)B-1)"]

= E[(X — R — Rr-)" 1- 9

The estimation problem begins with no prior measurements.
Thus, the stochastic portion of the initial estimate is zero if

the stochastic process mean is zero; Xg. ; is driven by

covariance matrix can be derived as follows:
Puk = Puk-1 — Puk—1Hk (HPik—1Hg + RO HcPik—1
= Puk—1 — Ki(HkPik-1HR + ROKy

(I = KeHi)Pigie— 1.

As depicted in Fig. 2, the one-step-ahead estimate is

(16)
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/ Enter initial estimate and \
l its error covariance.

One-step estimator

Compute blending factor

/ according to (15). \ Enter measurement
| Zk

Project estimate and error covariance Update estimate to be the posterior
one step ahead according to (17) and estimate with measurement 7,
(19), respectively. according to (12).
Compute posterior error / L l/’\osterior estimate
covariance matrix according X
\ to (16). k/k
y 1
N-step prediction according to
(20) and (21).

N-step predictor

Fig. 3. One-step estimator aistep predictor.

formulated as projecting X and Py t0 Xy, 1 and Py, 1 are time-
update.

4. Initial conditions, i.e.Xo_1, Py—1, Po, Ho, Qo, and Ry
have to be known to start recursive steps.

Kir 1k = DeXigko1 + PuKi(Zy — HiXin—1) + BUy

= D[Ry + K(Ze = HiKigr—1) + BiU
n 2.3. Prediction
= O Xk + BUy (17
The estimate resulting from recursive steps in Fig. 3 is a

Consequently, the one-step-ahead estimation error ISone-step-ahead prediction. Based on the posterior estimate,

derived as i.e. (12), the state that ¥ steps ahead of the measurement
&k = (DX + BUy + W) — (D Xigw + ByUy) Z, can be predicted by using the ARMA model [8]. From
Egs. (17) and (19), equations fol-step-ahead prediction
= DX — X + Wi are derived as
A k A
= B + Wi (18 KNk = ( 1 ‘pi)xk/k
i=k+N-1

In a manner similar to Eq. (14), the one-step-ahead error

covariance matrix is derived as L2 e
+ > _ [[ @ ]BnUn
P 1k = E[( D@k + WDy + Wi) ] mek L Ai=ken =1
. + Byrn-1Uk+n-1s (20)

= OPw D + Q. (19

According to the aforementioned statements, several _ ﬁ o \p k+N_1(DT
remarks for the Kalman estimation are concluded as "M« ™\ e L
follows: e =
1. AsKyis optimal, the posterior estima¥g is an optimal kil -2 mt1 kilN-1 o

estimate. * =k i—k+N71(Di Cm ‘flm_-li—l (I)]
2. Based on Egs.(12), (15), (16), (17) and (19), recursive B =

steps for constructing an one-step estimator are summar- + Quinoi.

ized in Fig. 3.

3. The recursive loop has two different kinds of updating. 21
Egs. (12) and (16) yieldini, andPy, from X, and The N-step predictor is an appendage of the one-step esti-
Pw-1 are measurement-update; Egs. (17) and (19) mation loop [8]. It is also shown in Fig. 3. As the current
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i (I + B9O(S) = T(S) = ky 15(9). (29
PN
Combining Egs. (27)—(29), the transfer function of a DC
e, Ly motor is derived as
o(s k
o (s _ T (30

E(s)  Sl(sla + R8I+ B) + krkp] |
Accordingly, the block diagram of a DC motor can be
shown in Fig. 5. IfL, = 0, (30) can be rewritten as

predicted value is assumed to be the initial value for the next g(s) K

icti i i e T o A (31
prediction, the more steps the predictor predicts, the larger ES Sstm+ 1)
error it results in.

Fig. 4. Circuit representation of DC motor.

where k,, = (k1)/(RB + krky,) and 7, = (RJ)/(RB + krky)
are called the motor gain constant and motor time constant,
3. Armature-controlled DC motor respectively.

An armature-controlled DC motor is employed in this 3.2. Continuous state space model
study as the physical model to perform error prediction.

The motor circuit representation is shown in Fig. 4. Define 6, 6, and i, as state variables, so that the state
vector isX =[66i,1". As
3.1. Transfer function d .
— 0=, (32
According to properties of a DC motor, the following dt
equations can be formulated [9]: substituting Egs. (23) and (32) into Eqg. (26) yields
¢ = kir. 2 d,_1,. o k. B,
. i 6= 3 (kriy — BO) = Jia = 3 6. (33
= ﬁaqﬁia Moreover, substituting Eq. (24) into Eq. (25) yields
d. 1 . E Ky - R .

Lo —ji.= —(E—Ri, — = — - 29— _—_j_. 4
= kq (ki ia gla= [ E-Re-@) = — 70~ a9
= kyi 23 In measurement, the rotating spegds the motor output.

¥ Accordingly, continuous state equations of the DC motor
do are
=ky—, 24
&=k @ o 0o 1 0 0
dl . .
d. _ —|lé6|=]10 -BIH (K1) 6
L, —ig+ Riy+ e =E, (25) dt _ _
dt ia 0 —(k/l) —(RLy)Lia
Jo+BH=T, (26) 0
wherek; = (ZP/27a) is called the motor constant, ak¢d = + 0 E, (35
ki(ki i; ) is the motor torque constant. (WL
Taking the Laplace transform for Egs. (24)—(26) results
in
0
(Las + R)la(s) = E(5) — Ex(9), (28 ia
I
1 a T 1 s@(s) [ 1
E k
© ) sL +R T sJ+B E 8

Eés)

Fig. 5. Block diagram of DC motor.
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Fig. 6. Block diagram of simulation system.
3.3. Discrete state space model 4. Simulation system

The general form of state equations for a continuous 4.1, Parameters
system reads [10]:
Parameters for the DC motor in this study are prescribed

V() = A V(1) + B. U(), as follows [12]:

Let & t) =L [(sl — Ay ] be the state transiton Kr=1NmA, K,=002Vs R=100,L,=001H
matrix for Eq. (37), wheré. " denotes the inverse Laplace
transform. The discrete state equations sampled from Eq.
(37) by a sample-and-hold with time intervRkeconds are

Substituting them into Egs. (35) and (36), the continuous
state equations of the motor become

as follows [11]: 0 0 1 0 0 0
X1 = AX + BU,, % 6 |=]0 —-01 100 6 |+ o |10
ia 0 -2 —1000JLi, 100
Y = CX + DU, (42
where
0

A= &yT), (38) vy=1010] é |. (43

T 'a
B= [J D (1) dT]BC, (39 . . :

0 Besides, the following parameters are used to conduct fail-

ure prediction:

C=¢C, (40 1. The failure threshold of the motor is defined as 5% less
than the normal value, which is set to be the initial esti-

D =D.. (41 mate in the Kalman prediction procedure. That is, the
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Fig. 7. Failure time generated by Monte Carlo simulation and predicted by Kalman filter when leag-8@enin.

motor is judged to fail if the rotating speed drops to 95% deviation of 3.333 rad's, which is 1% full scale accu-

of the normal value.
100 000 h [13].

every step in Kalman pred

racy [15] of the measurement.

. Mean time between failure (MTBF) for the motor is 6. PM lead-time is set ah X 60 min, wheren is the

ahead-step number for prediction. Accordingly, the

. Sampling intervall is 1 h that is the increment time for alarm signal goes on for reminding PM to be

iction. executed whenever the Kalman filter predicts that the

. Disturbancan, has mean 0 and variance 0.01 V [14]. motor speed will be lower than the prescribed threshold
. Measurement errdY, for § has zero mean and standard n X 60 min later.
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Fig. 8. Failure time difference between Monte Carlo simulation result and Kalman filter prediction when lead-&itnein.

4.2. Monte Carlo simulation and ARMA model represented as &, is placed at output end of both motor
) ) system and the Kalman filter. The block diagram of
Assuming failures of the motor occur randomly. Monte  gjmulation system is shown in Fig. 6. The symbobf the
Carlo simulation (MCS) is adopted to generate failure times sitenuator in Fig. 6 denotes the failure time constant of the

of the motor. The relation between failure rat) and  motor, which varies with failure times that are generated by
distribution function of lifef(t) is [1] MCS.

t
f(t) = h(t)exp— J h(r) d7]. (44
0

Failures occur randomly during the useful life period of a
bathtub curve [1]. The failure rate is constant during this
period. Let the failure rate in (44) be a constantand (44) 5.1. Results
becomes

5. Results and discussions

Two categories of simulation are conducted in this study,
namely one-step-ahead prediction and two-step-ahead
prediction. According to the central limit theorem, estima-
tors follow the normal distribution if the sample size is
sufficiently large. The sample size of 30 is a reasonable
number to use [17]. The larger the sample size is, the smaller
estimated error becomes, which tends to zero when the
sample size approaches infinity. Hence, each simulation is
executed 100 times. Simulation results for 60 min lead-time,
i.e. one-step-ahead prediction, is shown in Fig. 7. Fig. 7(a)
shows the results of 100 simulations of failure times gener-
ated by MCS, failure times predicted by Kalman filter, and
r{he associated alarm times. Fig. 7(b) shows the results of one
of the 100 simulations with properly scaled coordinates. The
failure time differences between MCS and Kalman predic-
éion are shown in Fig. 8. The mean value and the standard
deviation of the differences for the 100 simulations are
—34.71 and 65.90 min, respectively. The negative sign of
4.3. Exponential attenuator the mean value indicates that the failure time predicted by

Kalman filter is prior to the time generated by MCS.

To account for the aging failure modes and the exponen- According to theZ formula [17], the error for estimating

tially distributed failure timeg;, an exponential attenuator, the mean value of the sample population can be calculated

t
f(t) = A exp— JO rdrl=re ™M, (45)

which is an exponential distribution function. Lat i =
1,2,3,...m, represent a set of standard uniformly distributed
random numbers, the corresponding numbgref the
random variable in Eq. (45), i.e. simulated failure times,
are written as [1]

1
ti= —Xln Ui, (46)

with exponential distribution.

The measured data necessary for the recursive estimatio
loop of the Kalman filter, as depicted in Fig. 3, are generated
by ARMA model, i.e. Egs. (1)—(3). Simulations in this study
are performed by using MATLAB [16]. All needed random
numbers and white sequences with prescribed variances ar
obtained using the random number generator in MATLAB.
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Fig. 9. Failure time generated by Monte Carlo simulation and predicted by Kalman filter when lead-ti@@min.

by
Z2,0”
.

The Z value for a 99% confidence level is 2.575 [17].
Solving for E; gives

_ (2575(65.8954
B /100

According to the aforementioned data, there is 99% confi-

EZ =

E, = 16.97(min).

Results for the second category simulation, i.e. two-step-
ahead prediction and lead-time for PM is 120 min, are
shown in Figs. 9 and 10. The mean value of the failure
time differences between MCS and Kalman prediction is
—56.34 min, and the 99% confidence interval for this
mean is 20.06 min. The maximum prediction error for this
case is 76.40 min, which is 1.48 times greater than the error
of the one-step-ahead prediction.

dence to say that the interval for the mean value of the time 2-2. Discussions

difference between MCS and Kalman prediction is
—34.71 £ 16.97 min, i.e. from—17.74 to —51.68 min.
Taking the time difference into account, the alarm signal

will appear at least 77.74 min prior to failure occurrence.

1. In order to avoid false alarm, the failure threshold cannot
be set too close to the normal value. Otherwise, a
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Fig. 10. Failure time difference between Monte Carlo simulation result and Kalman filter prediction when lead-ti@emin.

decision-making algorithm is needed to identify that a perform state estimation by Kalman filter for each
failure indeed occurs. component.

. The disturbance amplitude should be composed of all

possible uncertainties of the motor and the environment.

. The proposed method can not deal with abrupt changes

during a sampling interval. Thus, the sampling interval 6. Conclusions
should not be too long.

. As the prediction is for PM purpose, the prediction time  Failure prediction simulation for PM by state estimation

should be reasonably long enough for the PM action.  through Kalman filtering has been performed in this paper.

. In contrast to the deterministic portion, the variance that Resultant prediction errors are acceptable not only for one-

is driven by the disturbance of the system is small. The step-ahead prediction but also for two-step-ahead predic-
difference of state variables between prediction stepstion. Considerations for determining the required PM

fades very fast. Thus, using thé-step predictor, i.e.  lead-time and the sampling time contradict to each other.
(20), only prediction result of the first several steps is How to compromise them and end up with an optimal value
of significance. is important. To simulate the aging failure mode, a state

. The proposed method in this study is exemplified by a variable, i.e. rotating speed, is monitored in this study.

motor system, which is treated as a component. The The more variables are measured, the more complicated
procedure can be executed on a multi-component systemfailure modes can be simulated. Incorporating with fault
if state equations for the components as a whole can betree analysis or Petri net model for failure, the proposed
constructed. Performing the procedure on either the method can be performed on those elements in minimum
multi-component system or each of the components are cut sets of a complicated or large system instead of on all
both feasible. For a complicated or large system, the elements of the whole system. Failure can be prevented in
proposed method can be performed on those elementdime so as to promote reliability only if failures can be early
in minimum cut sets that are constructed by fault tree predicted.

analysis or Petri net model for failure [18].

. Regarding multiple failure modes, they can be modeled
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